
The graphical brain: belief 
propagation and active 

inference



Structure of paper

-explain that the brain does Bayesian inference

-consider generative models

-develop a neural network microcircuitry that could implement this belief propagation

-deep hierarchical models

-continuous state-space models in generalised coordinates

-mixed models



Variational free energy

F(Q) = EQ[logQ(s) − logP(o, s)]

−logP(o)Surprise of an outcome

Upper bound to surprise
Functional of beliefs

Q is the variational distribution

Free-energy:



Expected free energy
F(Q) = EQ[logQ(s) − logP(o, s)]

G(π, τ) = 𝔼
Q̃

[logQ(sτ |π) − logP(sτ, oτ |ot<τ, π)]

Q̃ : = Q(oτ, sτ |π) = P(oτ |sτ)Q(sτ |π)

Q(oτ |sτ, π) = P(oτ |sτ)

= 𝔼
Q̃

[logQ(sτ |π) − logP(sτ |oτ, ot<τ, π) − logP(oτ)]

G(π) = ∑
τ>t

G(π, τ)

We have expressed the generative model in terms of a prior over outcomes that does not depend upon the policy (last term).

≈ 𝔼
Q̃

[logQ(sτ |π) − logQ(sτ |oτ, π) − logP(oτ)]

Source: active inference- a process theory

it is a mystery why               disappearedot<τ
We shouldn’t care about this approximation. It is only 
useful to relate to other constructs that people use. It is not 
implemented in the code.



Different types of approximation
of the posterior, to be able to compute free-energy.


This is for perception, i.e. within a timestep.

Best source: neuronal message passing using mean-field, Bethe and marginal approximations

Mean-field approximation

Bethe approximation

-> variational message passing

Marginal approximation

-> Belief propagation

-> Marginal message passing

Q( s̃ |π): = ∏
τ

Q(sτ |π)

Although this paper only talks about belief 
propagation, it actually uses variational 

message passing and the simulations use 
marginal message passing. Variational 

message passing performs less well than 
marginal or belief propagation.

Q( s̃ |π): = ∏
τ

Q(sτ |π)

τ

Q(sτ, sτ−1 |π)
Q(sτ |π)Q(sτ−1 |π)

Better performance: gets the true posterior for 
non-cyclic generative models. For cyclic 

generative models it generalises loopy belief 
propagation and gives approximations. 

Less biologically plausible and gives silly 
answers for some kinds of generative models 

with loops.

Happy middle ground



Belief propagation
=Sum-product algorithm

Comprises Kalman filter, Bayesian filter and many AI 
algorithms as special case.



Updates (variational message passing)



Generative model and 
generative process

Action selection: Selects the action corresponding to the most likely policy (= the one that 
minimises expected free-energy)



Neuronal implementation

Slightly speculative but based on empirical findings of neuronal structure and function. Can 
also lesion the model and see what pathological behaviour arises as a consequence to 

match it to corresponding areas in the brain.



Markov blanket

Bayesian network

P(A |∂A, B) = P(A |∂A)



Conjugate prior
=If the posterior and prior are in the same family

p(x |y) ∝ p(y |x)p(x)

e.g.

(to the likelihood)

Gaussian, gaussian

Categorical, Dirichlet



Deep hierarchical 
models

a

b

c

e.g.

a ∼ 𝒩(0,1)

b |a ∼ 𝒩(a, 1)

c |b, a ∼ 𝒩(b, 1)

Model inversion <=> Bayesian inference

i.e. inferring a,b from c

p(a, b |c) ∝ p(c |b, a)p(b, a) = p(c |b)p(b, a) = p(c |b)p(b |a)p(a)

(more factors at the end if more layers, but generalises nicely)

“Hyperprior”p(a)

p(b |a) “Prior”

p(c |b, a) “Likelihood”
(more hyper priors if more layers)



Higher level: slower timescales, lower level: faster timescales

Deep hierarchical models



Mixed models
A discrete model sitting on top of a continuous model

a

b

c

e.g.

a ∼ Dir(x)

b ∼ Cat(a)

c ∼ 𝒩(μb, 1)

p(a, b |c) ∝ p(c |b)p(b |a)p(a)



Continuous state-
space models
Generalised coordinates of motion


~ coefficients of Taylor expansions of trajectories

a

b

c

e.g.

a ∼ 𝒩(0,1)

b |a ∼ 𝒩(a, 1)

c |b, a ∼ 𝒩(b, 1)


